Multi-State Online Estimation of Lithium-Ion Batteries Based on Multi-Task Learning
Xiang Bao,
Yuefeng Liu (),
Bo Liu,
Haofeng Liu and
Yue Wang
Additional contact information
Xiang Bao: School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Yuefeng Liu: School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Bo Liu: School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Haofeng Liu: School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Yue Wang: School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Energies, 2023, vol. 16, issue 7, 1-20
Abstract:
Deep learning-based state estimation of lithium batteries is widely used in battery management system (BMS) design. However, due to the limitation of on-board computing resources, multiple single-state estimation models are more difficult to deploy in practice. Therefore, this paper proposes a multi-task learning network (MTL) combining a multi-layer feature extraction structure with separated expert layers for the joint estimation of the state of charge (SOC) and state of energy (SOE) of Li-ion batteries. MTL uses a multi-layer network to extract features, separating task sharing from task-specific parameters. The underlying LSTM initially extracts time-series features. The separated expert layer, consisting of task-specific and shared experts, extracts features specific to different tasks and shared features for multiple tasks. The information extracted by different experts is fused through a gate structure. Tasks are processed based on specific and shared information. Multiple tasks are trained simultaneously to improve performance by sharing the learned knowledge with each other. SOC and SOE are estimated on the Panasonic dataset, and the model is tested for generalization performance on the LG dataset. The Mean Absolute Error (MAE) values for the two tasks are 1.01% and 0.59%, and the Root Mean Square Error (RMSE) values are 1.29% and 0.77%, respectively. For SOE estimation tasks, the MAE and RMSE values are reduced by 0.096% and 0.087%, respectively, when compared with single-task learning models. The MTL model also achieves reductions of up to 0.818% and 0.938% in MAE and RMSE values, respectively, compared to other multi-task learning models. For SOC estimation tasks, the MAE and RMSE values are reduced by 0.051% and 0.078%, respectively, compared to single-task learning models. The MTL model also outperforms other multi-task learning models, achieving reductions of up to 0.398% and 0.578% in MAE and RMSE values, respectively. In the process of simulating online prediction, the MTL model consumes 4.93 ms, which is less than the combined time of multiple single-task learning models and almost the same as that of other multi-task learning models. The results show the effectiveness and superiority of this method.
Keywords: deep learning; lithium-ion batteries; multi-state estimation of batteries; multi-task learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3002/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3002/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3002-:d:1107072
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().