Fast Aero-Structural Model of a Leading-Edge Inflatable Kite
Oriol Cayon,
Mac Gaunaa and
Roland Schmehl ()
Additional contact information
Oriol Cayon: Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
Mac Gaunaa: Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
Roland Schmehl: Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands
Energies, 2023, vol. 16, issue 7, 1-19
Abstract:
Soft-wing kites for airborne wind-energy harvesting function as flying tensile membrane structures, each of whose shape depends on the aerodynamic load distribution and vice versa. The strong two-way coupling between shape and loading poses a complex fluid-structure interaction problem. Since computational models for such problems do not yet meet the requirements of being accurate and at the same time fast, kite designers usually work on the basis of intuition and experience, combined with extensive iterative flight testing. This paper presents a fast aero-structural model of leading-edge inflatable kites for the design phase of airborne wind-energy systems. The fluid-structure interaction solver couples two fast and modular models: a particle system model to capture the deformation of the wing and bridle-line system and a 3D nonlinear vortex step method coupled with viscous 2D airfoil polars to describe the aerodynamics. The flow solver was validated with several wing geometries and proved to be accurate and computationally inexpensive for pre-stall angles of attack. The coupled aero-structural model was validated using experimental data, showing good agreement in the deformations and aerodynamic forces. Therefore, the speed and accuracy of this model make it an excellent foundation for a kite design tool.
Keywords: airborne wind energy; fluid-structure interaction; vortex step method; lifting line method; particle system model; membrane structures (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3061/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3061/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3061-:d:1108978
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().