Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology
Henryk Łukowicz,
Łukasz Bartela (),
Paweł Gładysz and
Staffan Qvist
Additional contact information
Henryk Łukowicz: Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland
Łukasz Bartela: Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland
Paweł Gładysz: Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland
Staffan Qvist: Qvist Consulting Limited, London UB1 3EP, UK
Energies, 2023, vol. 16, issue 7, 1-25
Abstract:
This article presents the results of a techno-economic analysis of repowering a coal-fired power plant’s steam turbine system to instead accept heat produced by a pressurized water reactor-type small modular nuclear system (PWR SMR). This type of repowering presents a challenge due to the significantly lower steam pressure and temperature produced by the nuclear system. A 460 MW supercritical power unit with steam parameters of 28 MPa/560 °C/580 °C, operated in the Łagisza Power Plant in Poland, was selected for the analysis. After repowering, the turbine system would be fed with saturated steam from the steam generators of the SMRs at a pressure of 7 MPa and a temperature of 285 °C. In total, four options for repowering were analyzed. In all cases, the existing high-pressure section of the turbine was disconnected, and the existing low-pressure stages of the turbine, as well as all auxiliary and outward components (feedwater heaters, pumps, generator, condenser, condenser cooling, etc.), are re-used in their existing configurations, except for a feedwater-heater pump that needs to be replaced. In three cases, the existing intermediate pressure turbine section acts as the high-pressure stage of the repowered system. These cases include repowering without an additional reheater (case A), with an added single-stage reheater (B) and with an added two-stage reheater (C). In the fourth case (D), the existing intermediate pressure section was replaced by a new high-pressure turbine stage suited to the SMR live steam conditions. While all four repowering options are technically possible and may represent an economic advantage compared to a complete greenfield SMR installation, option D with a new high-pressure stage is clearly the best option available, with significant cost savings, leading to a lower levelized cost of electricity (LCOE) and a higher net present value (NPV) and net present value ratio (NPVR) than the greenfield case and all other repowering. For relatively new coal power plants with equipment in good condition, this type of repowering may present a cost optimal near-term pathway.
Keywords: retrofit decarbonization; steam turbine modernization; small modular reactors; light-water reactors; techno-economic assessment (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3083/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3083/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3083-:d:1109766
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().