Dual-Extended State Observer-Based Feedback Linearizing Control for a Nonlinear System with Mismatched Disturbances and Uncertainties
Ravi Gandhi,
Dipak Adhyaru,
Gulshan Sharma () and
Pitshou N. Bokoro
Additional contact information
Ravi Gandhi: Department of Robotics and Automation, Ajeenkya D.Y. Patil University, Pune 412105, India
Dipak Adhyaru: Department of Electronics and Instrumentation, Nirma University, Gujarat 382481, India
Gulshan Sharma: Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa
Pitshou N. Bokoro: Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa
Energies, 2023, vol. 16, issue 7, 1-21
Abstract:
This research article presents the nonlinear control framework to estimate and reject the mismatched lumped disturbances acting on the nonlinear uncertain system. It is an unfortunate fact that the conventional extended state observer (ESO) is not capable of simultaneously estimating the mismatched lumped disturbance and its derivative for the systems. Moreover, the basic ESO is only suitable for systems with integral chain form (ICF) structures. Similarly, the conventional feedback linearizing control (FLC) approach is not robust enough to stabilize systems in the presence of disturbances and uncertainties. Hence, the nonlinear control framework is proposed to overcome the above issues, which are composed of (a) a dual-extended state observer (DESO), and (b) a DESO-based FLC. The DESO provides information on the unmeasured state, mismatched disturbance, and its derivatives. The DESO-FLC utilizes the information from the DESO to counter the effects of such disturbances and to stabilize the nonlinear systems around the reference point. The detailed closed-loop analysis is presented for the proposed control framework in the presence of lumped disturbances. The performance robustness of the presented design was validated for the third-order, nonlinear, unstable, and disturbed magnetic levitation system (MLS). The results of the DESO-FLC approach are compared with the most popular linear quadratic regulator (LQR) and nonlinear FLC approaches based on the integral error criterion and the average electrical energy consumption.
Keywords: extended state observer; feedback linearizing control; mismatched disturbance; nonlinear system; stability analysis; lumped disturbances (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3142/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3142/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3142-:d:1112099
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().