EconPapers    
Economics at your fingertips  
 

Design and Analysis of Grid-Connected Solar Photovoltaic Systems for Sustainable Development of Remote Areas

Armin Razmjoo (), Arezoo Ghazanfari, Poul Alberg Østergaard and Sepideh Abedi
Additional contact information
Armin Razmjoo: Escola Técnica Superior d’Énginyeria Industrial de Barcelona (ETSEIB), Universitat Politécnica de Catalunya (UPC), Av. Diagonal, 647, 08028 Barcelona, Spain
Arezoo Ghazanfari: School of Economics, Finance and Marketing, RMIT University, Melbourne, VIC 3000, Australia
Poul Alberg Østergaard: Department of Planning, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark
Sepideh Abedi: Department of Renewable Energies Engineering, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran 1983969411, Iran

Energies, 2023, vol. 16, issue 7, 1-21

Abstract: This study analyses the expansion of solar energy in Iran, considering political, economic, social, and technological factors. Due to the prolonged sanctions on Iran, the development of clean energy power plants has been either halted or significantly reduced. Hence, this study aims to identify barriers to the expansion of solar energy power plants and simulate solar power plants using PVsyst (Photovoltaic system) software. The study is unique in its approach of combining technical analysis with social sciences to facilitate the implementation of solar energy expansion in remote areas. This study focuses on two specific areas with high solar radiation, namely Darab and Meybod, which are located in Fars and Yazd provinces, respectively. Solar energy can be generated in these two areas due to their unique location with high levels of solar irritation. To achieve this goal, the technical analyses focuson simulating the performance of a 9 kWp (kilowatt ‘peak’ power output of a system) grid-connected polysilicon(poly-Si) photovoltaic plant for Darab and a 9.90 kWp plant for Meybod. The simulation is carried out to obtain maximum electricity production and evaluate parameters such as incident radiation, performance ratio, energy into the grid, energy output at the array, and losses. The produced energy for Darab was 20.40 MWh/year, with specific production of 2061 kWh/kWp/year, and the performance ratio (PR) was 81.26%. For Meybod, production was 20.70 MWh/year, with specific production of 2091 kWh/kWp/year, and the performance ratio (PR) was 80.88%. Through the PEST analysis, it is evident that strategic planning and appropriate actions are crucial at the provincial, national, and local levels for energy systems’ development. This indicates that both governments and citizens should play an active role in supporting the expansion of energy systems by planning and creating awareness among the public to embrace and adopt energy systems.

Keywords: renewable energy; photovoltaic systems; energy generation; regional areas (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3181/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3181/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3181-:d:1113305

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3181-:d:1113305