Failure Detection Techniques on the Demand Side of Smart and Sustainable Compressed Air Systems: A Systematic Review
Massimo Borg,
Paul Refalo () and
Emmanuel Francalanza
Additional contact information
Massimo Borg: Department of Industrial and Manufacturing Engineering, Faculty of Engineering, University of Malta, 2080 Msida, Malta
Paul Refalo: Department of Industrial and Manufacturing Engineering, Faculty of Engineering, University of Malta, 2080 Msida, Malta
Emmanuel Francalanza: Department of Industrial and Manufacturing Engineering, Faculty of Engineering, University of Malta, 2080 Msida, Malta
Energies, 2023, vol. 16, issue 7, 1-36
Abstract:
The industrial sector is a crucial economic pillar, seeing annual increases in the production output. In the last few years, a greater emphasis has been placed on the efficient and sustainable use of resources within industry. The use of compressed air in this field is hence gaining interest. These systems have numerous benefits, such as relative low investment costs and reliability; however, they suffer from low-energy efficiency and are highly susceptible to faults. Conventional detection systems, such as ultrasonic leak detection, can be used to identify faults. However, these methods are time consuming, meaning that leakages are often left unattended, contributing to additional energy wastage. Studies published in this area often focus on the supply side rather than the demand side of pneumatic systems. This paper offers a novel review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology of fault detection methods on the demand side of compressed air systems, leading towards a comprehensive understanding of smart and sustainable pneumatic systems. Fifty-three studies were classified and reviewed under the following three areas: (a) demand parameters which help in identifying fault sources; (b) approaches taken to analyse the parametric data; and (c) the role of Artificial Intelligence (AI) in pneumatic fault monitoring systems. This review shows that fault detection on the demand side has received greater importance in the last five years and that data analysis is crucial for AI to be implemented correctly. Nevertheless, it is clear that further research in this sector is essential, in order to investigate more complex systems. It is envisaged that this study can promote the adoption of such systems, contributing to an energy-efficient and cost-effective industry.
Keywords: compressed air; fault detection; energy efficiency; smart and sustainable systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3188/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3188/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3188-:d:1113496
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().