Nanostructured Thermoelectric PbTe Thin Films with Ag Addition Deposited by Femtosecond Pulsed Laser Ablation
Alessandro Bellucci (),
Stefano Orlando,
Luca Medici,
Antonio Lettino,
Alessio Mezzi,
Saulius Kaciulis and
Daniele Maria Trucchi
Additional contact information
Alessandro Bellucci: Istituto di Struttura della Materia (ISM)—Sez. Montelibretti, DiaTHEMA Laboratory, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, 00015 Monterotondo, Italy
Stefano Orlando: Istituto di Struttura della Materia (ISM)—Sez. Tito Scalo, FemtoLab, Consiglio Nazionale delle Ricerche, Zona Industriale, 85050 Tito, Italy
Luca Medici: Istituto di Metodologie per l’Analisi Ambientale (IMAA), Consiglio Nazionale delle Ricerche, Zona Industriale, 85050 Tito, Italy
Antonio Lettino: Istituto di Metodologie per l’Analisi Ambientale (IMAA), Consiglio Nazionale delle Ricerche, Zona Industriale, 85050 Tito, Italy
Alessio Mezzi: Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)—Sez. Montelibretti, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, 00015 Monterotondo, Italy
Saulius Kaciulis: Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)—Sez. Montelibretti, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, 00015 Monterotondo, Italy
Daniele Maria Trucchi: Istituto di Struttura della Materia (ISM)—Sez. Montelibretti, DiaTHEMA Laboratory, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, 00015 Monterotondo, Italy
Energies, 2023, vol. 16, issue 7, 1-14
Abstract:
Pulsed laser deposition operated by an ultra-short laser beam was used to grow in a vacuum and at room temperature natively nanostructured thin films of lead telluride (PbTe) for thermoelectric applications. Different percentages of silver (Ag), from 0.5 to 20% of nominal concentration, were added to PbTe deposited on polished technical alumina substrates using a multi-target system. The surface morphology and chemical composition were analyzed by Scanning Electron Microscope and X-ray Photoelectron Spectroscopy, whereas the structural characteristics were investigated by X-ray Diffraction. Electrical resistivity as a function of the sample temperature was measured by the four-point probe method by highlighting a typical semiconducting behavior, apart from the sample with the maximum Ag concentration acting as a degenerate semiconductor, whereas the Seebeck coefficient measurements indicate n-type doping for all the samples. The power factor values (up to 14.9 µW cm −1 K −2 at 540 K for the nominal 10% Ag concentration sample) are competitive for low-power applications on flexible substrates, also presuming the achievement of a large reduction in the thermal conductivity thanks to the native nanostructuring.
Keywords: thermoelectric properties; nanostructuring; pulsed fs-laser deposition; lead telluride (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3216/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3216/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3216-:d:1114659
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().