AI and Expert Insights for Sustainable Energy Future
Mir Sayed Shah Danish ()
Additional contact information
Mir Sayed Shah Danish: Energy Systems (Chubu Electric Power) Funded Research Division, IMaSS (Institute of Materials and Systems for Sustainability), Nagoya University, Furocho, Chikusa Ward, Nagoya 464-8601, Aichi, Japan
Energies, 2023, vol. 16, issue 8, 1-27
Abstract:
This study presents an innovative framework for leveraging the potential of AI in energy systems through a multidimensional approach. Despite the increasing importance of sustainable energy systems in addressing global climate change, comprehensive frameworks for effectively integrating artificial intelligence (AI) and machine learning (ML) techniques into these systems are lacking. The challenge is to develop an innovative, multidimensional approach that evaluates the feasibility of integrating AI and ML into the energy landscape, to identify the most promising AI and ML techniques for energy systems, and to provide actionable insights for performance enhancements while remaining accessible to a varied audience across disciplines. This study also covers the domains where AI can augment contemporary and future energy systems. It also offers a novel framework without echoing established literature by employing a flexible and multicriteria methodology to rank energy systems based on their AI integration prospects. The research also delineates AI integration processes and technique categorizations for energy systems. The findings provide insight into attainable performance enhancements through AI integration and underscore the most promising AI and ML techniques for energy systems via a pioneering framework. This interdisciplinary research connects AI applications in energy and addresses a varied audience through an accessible methodology.
Keywords: AI-compatible energy models; transforming energy models; parameter-based models; data-driven-based models; energy system modeling; modern energy policies; energy future landscape (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3309/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3309/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3309-:d:1118312
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().