Developing a Reactivity-Equivalent Physical Transformation to Simulate an Axially Heterogeneous Boiling Water Reactor
Robert Mossop (),
Bruno Merk,
Maulik Patel,
Tetsushi Hino and
Aiden Peakman
Additional contact information
Robert Mossop: School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
Bruno Merk: School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
Maulik Patel: School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
Tetsushi Hino: Hitachi, Ltd., 7-1-1, Omika-cho, Hitachi-shi 319-1292, Ibaraki-ken, Japan
Aiden Peakman: School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
Energies, 2023, vol. 16, issue 8, 1-18
Abstract:
Hitachi is advancing their designs for a conceptual reactor called the resource-renewable boiling water reactor (RBWR), a concept reactor similar to the advanced boiling water reactor with a harder neutron spectrum. This design aims to minimise construction costs and waste production as well as to utilise separated plutonium and minor actinide fuel. However, the axial heterogeneity of the design poses calculation difficulties. The aim of this work is to use a known method, reactivity-equivalent physical transformation (RPT), for calculating fuel with double heterogeneity and apply it to a BWR-type fuel pin. This could reduce the calculation time needed for optimisation of the design of the RBWR. The objective of the study is to use SCALE 6.2 to produce an equivalent axial pin model by comparison with the burnup and neutron spectra of a radial model of the fuel. This model can then be used for 2D burnup calculations, and in future work will be used for the generation of two-group and multigroup cross-sections for further deterministic calculations as part of a two-step approach for analysis of the RBWR. The RPT method has been extensively tested on spherical fuel, and SCALE is a standard industry code. The initial radial model is a hexagonal assembly with 20% enriched UO 2 fuel in a zircaloy cladding, surrounded by light water moderator. The derived axial model has a water density distribution taken from Hitachi’s RBWR designs. Criticality over 70 GWd/tU burnup is estimated using the model. The application of the RPT to the BWR pin was shown to be possible, but to have limitations with the introduction of additional radial complexity. For a single pin, excellent agreement between the radial and axial models could be found across a range of water densities, but in the case of an assembly level calculation distinct equivalence models were required for each water density. In addition, the produced RPT model is validated using SCALE’s 3D Monte Carlo module, KENO.
Keywords: waste burner; axial heterogeneity; deterministic; RBWR (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3359/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3359/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3359-:d:1120620
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().