Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures
Moritz Ostermann (),
Julian Grenz (),
Marcel Triebus,
Felipe Cerdas,
Thorsten Marten,
Thomas Tröster and
Christoph Herrmann
Additional contact information
Moritz Ostermann: Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
Julian Grenz: BENTELER Business Services GmbH, Residenzstraße 1, 33104 Paderborn, Germany
Marcel Triebus: Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
Felipe Cerdas: Chair of Sustainable Manufacturing & Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany
Thorsten Marten: Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
Thomas Tröster: Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
Christoph Herrmann: Chair of Sustainable Manufacturing & Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany
Energies, 2023, vol. 16, issue 8, 1-24
Abstract:
Lightweight design is a common approach to reduce energy demand in the use stage of vehicles. The production of lightweight materials is usually associated with an increase in energy demand, so the environmental impacts of lightweight structures need to be assessed holistically using a life cycle assessment. To estimate the life cycle environmental impacts of a product in its developmental stage, for example, by life cycle engineering, future changes in relevant influencing factors must be considered. Prospective life cycle assessment provides methods for integrating future scenarios into life cycle assessment studies. However, approaches for integrating prospective life cycle assessment into product development are limited. The objective of this work is to provide the methodological foundation for integrating future scenarios of relevant influencing factors in the development of lightweight structures. The applicability of the novel methodology is demonstrated by a case study of a structural component in a steel, aluminium, and hybrid design. The results show that appropriate decarbonisation measures can reduce the life cycle greenhouse gas emissions by up to 95 percent until 2050. We also found that shifts in the environmentally optimal design are possible in future scenarios. Therefore, the methodology and data provided contribute to improved decision-making in product development.
Keywords: life cycle engineering; life cycle assessment; lightweight design; prospective LCA; future-oriented LCA; energy system; material production; sustainable production (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3371/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3371/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3371-:d:1121153
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().