Identification of Optimal Binders for Torrefied Biomass Pellets
James W. Butler (),
William Skrivan and
Samira Lotfi ()
Additional contact information
James W. Butler: National Research Council of Canada, 1200 Montréal Rd, Ottawa, ON K1A 0R6, Canada
William Skrivan: National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada
Samira Lotfi: National Research Council of Canada, 1200 Montréal Rd, Ottawa, ON K1A 0R6, Canada
Energies, 2023, vol. 16, issue 8, 1-23
Abstract:
The pretreatment of biomass through torrefaction is an effective means of improving the fuel quality of woody biomass and its suitability for use in existing facilities burning thermal coal. Densification of torrefied biomass produces a fuel of similar energy density, moisture content, and fixed carbon content to low-grade coals. Additionally, if the torrefaction conditions are optimized, the produced torrefied pellet will be resistant to weathering and biological degradation, allowing for outdoor storage and transport in a manner similar to coal. In untreated biomass, lignin is the primary binding agent for biomass pellets and is activated by the heat and pressures of the pellet extrusion process. The thermal degradation of lignin during torrefaction reduces its binding ability, resulting in pellets of low durability not suitable for transportation. The use of a binding agent can increase the durability of torrefied pellets/briquettes through a number of different binding mechanisms depending on the binder used. This study gives a review of granular binding mechanisms, as they apply to torrefied biomass and assesses a variety of organic and inorganic binding agents, ranking them on their applicability to torrefied pellets based on a number of criteria, including durability, hydrophobicity, and cost. The best binders were found to be solid lignin by-product derived from pulp and paper processing, biomass tar derived from biomass pyrolysis, tall oil pitch, and lime.
Keywords: torrefied biomass; torrefaction; binders; densification; pellets; lignin; thermally treated biomass fuels (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3390/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3390/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3390-:d:1121673
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().