Energy Management in a Standalone Microgrid: A Split-Horizon Dual-Stage Dispatch Strategy
Aslam Amir,
Hussain Shareef () and
Falah Awwad
Additional contact information
Aslam Amir: Department of Electrical Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
Hussain Shareef: Department of Electrical Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
Falah Awwad: Department of Electrical Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
Energies, 2023, vol. 16, issue 8, 1-25
Abstract:
Microgrid technology has recently gained global attention over increasing demands for the inclusion of renewable energy resources in power grids, requiring constant research and development in aspects such as control, protection, reliability, and management. With an ever-increasing scope for maximizing renewable energy output, there is also a need to reduce the curtailment of power on both the generation and demand sides by increasing forecasting accuracies and using resources more effectively. This paper proposes a dual-stage dispatch employing a novel “split-horizon” strategy, in a bid to enhance energy management in a standalone microgrid. The split-horizon is essentially the considered time horizon split into equal operational periods of the dual-stage dispatch. The proposed strategy utilizes a custom-designed novel variant of the inertia-weight-based particle swarm optimization (PSO), termed customized PSO, to perform the optimal schedule and dispatch operation by benefitting from the simplicity of PSO and customization as per the considered objectives. A modified IEEE 34-node test system is derived into a standalone microgrid with added distributed energy resources to test the proposed strategy, while another standalone microgrid, a modified IEEE 69-node test feeder, is also considered for scalability. Furthermore, the validation of the strategy is performed appropriately with a case study while also validating the proposed optimization algorithm. It is observed that the proposed energy management strategy provides approximatelya 7% reduction in costs.
Keywords: microgrids; energy management; economic dispatch; optimization; renewable energy; energy storage system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3400/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3400/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3400-:d:1121848
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().