Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission
Pingan Wang,
Ning Yang,
Liubing Xie,
Yanpeng Xu,
Huan He,
Yuechun Fu and
Xiaoming Shen ()
Additional contact information
Pingan Wang: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Ning Yang: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Liubing Xie: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Yanpeng Xu: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Huan He: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Yuechun Fu: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Xiaoming Shen: Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Energies, 2023, vol. 16, issue 8, 1-14
Abstract:
Photon-enhanced thermionic emission (PETE) is an efficient solar energy conversion mechanism that combines photovoltaic effects and thermionic emissions. In this study, a diffusion–emission model of electrons for the InGaN cathode was deduced based on one-dimensional continuity equations. The temperature dependence of the excess electron concentration, current density, and conversion efficiency at different cathode electron affinities was simulated, and the performance of the PETE converter under isothermal and nonisothermal state was compared. The results show that the improvement in conversion efficiency under isothermal condition was limited by the increase in anode temperature and reached the maximum of ~22% at an electron affinity of 0.56–0.59 eV and the operating temperature of 710–740 K. When the anode temperature was 500 K, the conversion efficiency increased with the increase in the electron affinity and exceeded the maximum value of the isothermal state at 0.6 eV. We explored the behavior of the converter at bias voltages as well as the determination of the maximum conversion efficiency point. The open-circuit voltage in the isothermal state was lower than that in the nonisothermal state, and the output voltage at the maximum conversion efficiency was eventually greater than the flat-band voltage.
Keywords: photon-enhanced thermionic emission; InGaN cathode; isothermal; nonisothermal (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3483/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3483/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3483-:d:1124990
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().