Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst: Box–Behnken Design and Process Evaluation
Marcela M. Marcelino,
Gary A. Leeke,
Guozhan Jiang,
Jude A. Onwudili,
Carine T. Alves,
Delano M. de Santana,
Felipe A. Torres,
Ednildo A. Torres and
Silvio A. B. Vieira de Melo ()
Additional contact information
Marcela M. Marcelino: Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
Gary A. Leeke: School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
Guozhan Jiang: School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
Jude A. Onwudili: Energy & Bioproducts Research Institute, School of Infrastructure & Sustainable Engineering, Aston University, Birmingham B4 7ET, UK
Carine T. Alves: Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
Delano M. de Santana: Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
Felipe A. Torres: Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
Ednildo A. Torres: Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
Silvio A. B. Vieira de Melo: Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
Energies, 2023, vol. 16, issue 8, 1-34
Abstract:
The energy conversion of nickel-impregnated coconut shells using supercritical water has not yet been explored. The impregnation process was conducted at room temperature and a pH of 5.80 for 72 h. Characterization of the prepared sample confirmed the presence of nickel nanoparticles with an average size of 7.15 nm. The gasification of control and impregnated samples was performed at 400–500 °C, biomass loading from 20 to 30 wt% and residence time from 20 to 60 min. The response surface methodology (RSM) approach, with a Box–Behnken method, was used to design the experiments. The optimization model showed that the non-catalytic process at 500 °C, 60 min and 20 wt% of biomass loading could promote an H 2 yield of 8.8 mol% and gasification efficiency of 47.6%. The gasification of nickel-impregnated coconut shells showed significantly higher gasification efficiency (58.6%) and hydrogen yield (17.2 mol%) with greater carbon and hydrogen efficiencies (109.4 and 116.9%) when compared to the non-catalytic process. The presence of nickel particles in the biomass matrix as nanocatalysts promoted higher hydrogen production and supercritical water gasification efficiency.
Keywords: coconut shell; supercritical water gasification; hydrogen; efficiency; nickel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3563/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3563/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3563-:d:1128301
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().