Review of Big Data Analytics for Smart Electrical Energy Systems
Huilian Liao (),
Elizabeth Michalenko and
Sarat Chandra Vegunta
Additional contact information
Huilian Liao: Power, Electrical and Control Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
Elizabeth Michalenko: Power, Electrical and Control Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
Sarat Chandra Vegunta: Siemens PTI, Siemens Industry, Inc., 400 State St., 4th Floor, Schenectady, NY 12305, USA
Energies, 2023, vol. 16, issue 8, 1-19
Abstract:
Energy systems around the world are going through tremendous transformations, mainly driven by carbon footprint reductions and related policy imperatives and low-carbon technological development. These transformations pose unprecedented technical challenges to the energy sector, but they also bring opportunities for energy systems to develop, adapt, and evolve. With rising complexity and increased digitalization, there has been significant growth in the amount of data in the power/energy sector (data ranging from power grid to household levels). Utilization of this large data (or “big data”), along with the use of proper data analytics, will allow for useful insights to be drawn that will help energy systems to deliver an increased amount of technical, operational, economic, and environmental benefits. This paper reviews various categories of data available in the current and future energy systems and the potential benefits of utilizing those data categories in energy system planning and operation. This paper also discusses the Big Data Analytics (BDA) that can be used to process/analyze the data and extract useful information that can be integrated and used in energy systems. More specifically, this paper discusses typical applications of BDA in energy systems, including how BDA can be used to resolve the critical issues faced by the current and future energy network operations and how BDA contributes to the development of smarter and more flexible energy systems. Combining data characterization and analysis methods, this review paper presents BDA as a powerful tool for making electrical energy systems smarter, more responsive, and more resilient to changes in operations.
Keywords: big data analytics; network planning and operation; smart electrical energy systems; demand side management; artificial neural networks; low-carbon technologies (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/8/3581/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/8/3581/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:8:p:3581-:d:1128808
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().