EconPapers    
Economics at your fingertips  
 

The Relevance of Lithium Salt Solvate Crystals in Superconcentrated Electrolytes in Lithium Batteries

Jake A. Klorman and Kah Chun Lau ()
Additional contact information
Jake A. Klorman: Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA
Kah Chun Lau: Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA

Energies, 2023, vol. 16, issue 9, 1-14

Abstract: Based on the unique ubiquity of similar solvate structures found in solvate crystals and superconcentrated electrolytes, we performed a systematic study of four reported solvate crystals which consist of different lithium salts (i.e., LiMPSA, LiTFSI, LiDFOB, and LiBOB) solvated by acetonitrile (MeCN) based on first principles calculations. Based on the calculations, these solvate crystals are predicted to be electronic insulators and are expected to be similar to their insulating liquid counterpart (e.g., 4 M superconcentrated LiTFSI-MeCN electrolyte), which has been confirmed to be a promising electrolyte in lithium batteries. Although the MeCN molecule is highly unstable during the reduction process, it is found that the salt-MeCN solvate molecules (e.g., LiTFSI-(MeCN) 2 , LiDFOB-(MeCN) 2 ) and their charged counterparts (anions and cations) are both thermodynamically and electrochemically stable, which can be confirmed by Raman vibrational modes through the unique characteristic variation in C≡N bond stretching of MeCN molecules. Therefore, in addition to the development of new solvents or lithium salts, we suggest it is possible to utilize the formation of superconcentrated electrolytes with improved electrochemical stability based on existing known compounds to facilitate the development of novel electrolyte design in advanced lithium batteries.

Keywords: batteries; salt–solvent solvates; superconcentrated electrolytes; redox potential; solvation science (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/9/3700/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/9/3700/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:9:p:3700-:d:1133017

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3700-:d:1133017