Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions
Adhirath Mandal,
Dowan Cha () and
HaengMuk Cho
Additional contact information
Adhirath Mandal: Department of Drone-Robot Engineering, Pai Chai University, Daejeon 35345, Republic of Korea
Dowan Cha: Department of Drone-Robot Engineering, Pai Chai University, Daejeon 35345, Republic of Korea
HaengMuk Cho: Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea
Energies, 2023, vol. 16, issue 9, 1-23
Abstract:
Energy is primarily obtained from fossil fuels and with the use of fossil fuels, we are increasing the emissions and greenhouse gases. It takes constant effort to meet the energy need from environmentally acceptable and renewable fuels. In order to find a replacement for depleting fossil fuel energy, a range of oxygenated fuels was investigated based on their accessibility and geographic areas. This work assessed the transesterification process’s feasibility of turning used fry oil into biodiesel fuel and its physiochemical characteristics. The performances of a diesel engine operating on biodiesel and diesel fuel were assessed and compared. Four different types of fry oils were utilized for the research on a diesel agricultural engine with indirect injection. The first fry, second fry, third fry, and restaurant fry were the various sorts of fry oil. Five different types of biodiesels and their blends were investigated for their engine efficiency and emission metrics. B40 (biodiesel 40% and diesel 60%) and B80 (biodiesel 80% and diesel 20%) biodiesel blends were tested in different engine speed conditions under 50% and 100% engine loads. While the brake thermal efficiency (BTE) decreased as the engine rpm increased, it was found that the brake-specific fuel consumption (BSFC) increased. Due to the poor air–fuel ratio at higher engine speeds, the BTE decreased. NO x (nitrogen oxides) emissions were higher for all the biodiesel blends because of the higher oxygen content in the biodiesel blends. The smoke opacity in both blends decreased with rising rpm under both load situations and was lower than in pure diesel. Because of the larger cetane number and lower heating value, the exhaust gas temperature (EGT) dropped. It was determined that prolonging the fry time altered the engine performance and emission metrics. The use of sustainable fuel is essential; waste fry cooking oil as a substitute for fossil diesel could be a prospective replacement in the agricultural engine and transportation sector.
Keywords: waste cooking fry oil; biodiesel; CI engine; emission; performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/9/3711/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/9/3711/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:9:p:3711-:d:1133447
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().