EconPapers    
Economics at your fingertips  
 

A Comprehensive Study on DES Pretreatment Application to Microalgae for Enhanced Lipid Recovery Suitable for Biodiesel Production: Combined Experimental and Theoretical Investigations

Michele Corneille Matchim Kamdem (), Aymard Didier Tamafo Fouegue and Nanjun Lai
Additional contact information
Michele Corneille Matchim Kamdem: College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
Aymard Didier Tamafo Fouegue: Department of Chemistry, Higher Teacher Training College, University of Bertoua, Bertoua P.O. Box 652, Cameroon
Nanjun Lai: Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China

Energies, 2023, vol. 16, issue 9, 1-20

Abstract: Cell wall disturbance is an important step in the downstream process of improving the efficiency of lipid extraction from microalgae. Surfactants have been proven to be efficient alternatives to organic solvents in the extraction process. In this study, an effective approach involving deep eutectic solvent (DES) (choline chloride and carboxylic acids) treatment supplemented with surfactants has been developed to disrupt the cell walls of microalgae and increase the extraction of lipids suitable for biodiesel production. A combination of polar and non-polar solvents (ethyl acetate and n-butanol) was used for the lipid extraction process. Microalgae biomass pretreated with choline chloride malonic acid supplemented with the surfactant hexadecyl trimethylammonium chloride (HTAC) showed the best results, improving lipid extraction by 12.365%. Further elucidation of the detailed mechanism behind the cell disruption of the microalga wall by DES was achieved using density functional theory (DFT) methods. The DFT calculations revealed that hydrogen bonds between the chloride ion of the DES and hydrogen bond donor (HBD) molecules are key factors dominating the destruction of the cell wall structure of Chlorella pyrenoidosa . The optimization of lipid extraction was performed through a single-factor experiment, which included the effects of different variables (time, temperature, dosage of surfactant, and ratio of n-butanol to ethyl acetate). An extraction period of 60 min at 80 °C with a surfactant concentration of 0.5% at a 1:2 ratio of n-butanol to ethyl acetate was found to produce the maximum lipid yield (16.97%). Transesterification reactions were used to obtain fatty acid methyl esters from the optimized extracted lipids. Thus, it was determined that C16:0 (20.04%), C18:2 (29.95%), and C18:3 (21.21%) were the most prevalent fatty acids. The potential for producing biodiesel from C. pyrenoidosa was validated by the high yields of C18 fatty acid methyl esters, and the properties of biodiesel are within the European and US standards.

Keywords: microalgae; cell wall; lipid extraction; deep eutectic solvent; pretreatment; density functional theory (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/9/3806/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/9/3806/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:9:p:3806-:d:1136017

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3806-:d:1136017