EconPapers    
Economics at your fingertips  
 

The Effect of an Electric Field on the Sliding Friction of the Silicone Rubber against Selected Metals in Motor Base Oils

Marek Głogowski (), Daniel Smykowski and Sławomir Pietrowicz ()
Additional contact information
Marek Głogowski: Department of Cryogenics and Aeronautical Engineering, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 St., 50-370 Wrocław, Poland
Daniel Smykowski: Department of Mechanics and Power Systems, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 St., 50-370 Wrocław, Poland
Sławomir Pietrowicz: Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 St., 50-370 Wrocław, Poland

Energies, 2023, vol. 16, issue 9, 1-17

Abstract: The effects of applying external electric fields on the coefficient of friction of a selected elastomer during mechanical interaction with steel and copper surface oil (counter samples) immersed in a pin-on-disc setup were studied and investigated. The synthetic base oils used were PAG 68 and PAO 6. The elastomer selected for the study is commonly used in the manufacture of rotary lip seals. During the investigations, the viscosity of the oils tested was also experimentally determined in the temperature range of between 286 K and 393 K. It was found that the external electric field had a significant effect on the friction coefficient, depending on the type of base oil, the angular velocity of the load force, and the counterpart. It was observed that for both oils tested, the coefficient of friction values decreased by about 30% when an external DC electric field was applied. In addition, a simple numerical model of the friction interface was proposed and studied. The experimental results were complemented by molecular simulations to determine the interaction between the lubricant molecule and the metal surface. Furthermore, molecular models of the metal surface and lubricant molecules were simulated using ReaxFF and COMPASS force fields to determine adsorption energies.

Keywords: pin-on-disc; molecular models; friction coefficient; DC electric field (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/9/3954/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/9/3954/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:9:p:3954-:d:1141853

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3954-:d:1141853