An MV-Connected Ultra-Fast Charging Station Based on MMC and Dual Active Bridge with Multiple dc Buses
Marzio Barresi,
Edoardo Ferri and
Luigi Piegari ()
Additional contact information
Marzio Barresi: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
Edoardo Ferri: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
Luigi Piegari: Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
Energies, 2023, vol. 16, issue 9, 1-23
Abstract:
The diffusion of electric vehicles will be strongly related to the capacity to charge them in short times. To do so, the necessity of widespread fast charging stations arises. However, their intermittent demand represents a challenging load for grid operators. In order to relieve their impact on the electrical grid operation, integrating storage systems in the charging stations represents a potential solution, although it complicates the overall system management. Moreover, standard converter architectures for the MV grid interface require the installation of bulky transformers and filters. In order to cope with the mentioned problems, this paper proposes an ultra-fast charging station topology based on a modular multilevel converter (MMC) structure and dual-active bridge (DAB) converters. Thanks to the multilevel converter properties, the proposed charging station can be directly interfaced with the MV grid without requiring transformers or filters. Additionally, exploiting the degree of freedom in the converter control system, such as circulating components, offers uneven power distribution among the converter submodules that can be managed. Along with the MMC control strategy, the article addresses a straightforward methodology to select the main parameters of the DAB converter as a function of the involved grid power and circulating power contributions, with the primary goal of obtaining a trade-off between internal balancing performances and a broad soft-switching region without incurring in converter oversizing. The effectiveness of the proposed charging station is finally discussed through numerical simulations, where its behavior during a power demand cycle is analyzed.
Keywords: ultra-fast charging; storage systems; batteries; electric vehicles; modular multilevel converter; dual-active bridge (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/9/3960/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/9/3960/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:9:p:3960-:d:1141986
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().