EconPapers    
Economics at your fingertips  
 

Modeling and Harmonic Analysis of a Fractional-Order Zeta Converter

Lingling Xie and Di Wan ()
Additional contact information
Lingling Xie: Guangxi Key Laboratory of Power System Optimization and Energy-Saving Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, China
Di Wan: Guangxi Key Laboratory of Power System Optimization and Energy-Saving Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, China

Energies, 2023, vol. 16, issue 9, 1-18

Abstract: The Zeta converter is an essential and widely used high-order converter. The current modeling studies on Zeta converters are based on the model that devices, such as capacitors and inductors, are of integer order. For this reason, this paper takes the Zeta converter as the research object and conducts an in-depth study on its fractional-order modeling. However, the existing modeling and analysis methods have high computational complexity, the analytical solutions of system variables are tedious, and it is difficult to describe the ripple changes of state variables. This paper combines the principle of harmonic balance with the equivalent small parameter method (ESPM); the approximate analytic steady-state solution of the state variable can be obtained in only three iterative steps in the whole solving process. The DC components and ripples of the state variables obtained by the proposed method were compared with those obtained by the Oustaloup’s filter-based approximation method; the symbolic period results obtained by ESPM had sufficient precision because they included more combinations of higher harmonics. Finally, the influence of fractional order on harmonics were analyzed. The obtained results show that the proposed method has the advantage of being less computational and easily describing changes in the ripple of the state variables. The simulation results are provided for validity of the theoretical analysis.

Keywords: zeta converters; fractional order; harmonic balance; ESPM; Oustaloup’s (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/9/3969/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/9/3969/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:9:p:3969-:d:1142229

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3969-:d:1142229