EconPapers    
Economics at your fingertips  
 

Paleotectonic Stress and Present Geostress Fields and Their Implications for Coalbed Methane Exploitation: A Case Study from Dahebian Block, Liupanshui Coalfield, Guizhou, China

Jilin Wang (), Youkun Wang, Xiaozhi Zhou, Wenxin Xiang and Changran Chen
Additional contact information
Jilin Wang: Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education (China University of Mining and Technology), Xuzhou 221116, China
Youkun Wang: Guizhou Coalbed Methane Energy Development Co., Ltd., Guiyang 550081, China
Xiaozhi Zhou: Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education (China University of Mining and Technology), Xuzhou 221116, China
Wenxin Xiang: Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education (China University of Mining and Technology), Xuzhou 221116, China
Changran Chen: Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education (China University of Mining and Technology), Xuzhou 221116, China

Energies, 2023, vol. 17, issue 1, 1-23

Abstract: The macroscopic structural fractures (joints) and geostress distribution characteristics of coal reservoirs are important factors affecting the exploitation of coalbed methane (CBM). In this study, the joints in the sedimentary strata of the Dahebian block in Liupanshui area, Guizhou Province were investigated. Directional coal samples were collected for observation and statistical analysis of coal microfractures, the paleotectonic stress fields of the study area were reconstructed, and the tectonic evolution was elucidated. The geostress distribution characteristics of the target coal seam (coal seam No. 11, P 3 l ) in the study area were analyzed using the finite element numerical simulation method. The results indicate that the structural evolution of the Dahebian syncline in the study area can be divided into two stages. The Late Jurassic–Early Cretaceous stage (Early Yanshanian) is the first stage. Affected by the sinistral strike slip of the Weining–Ziyun–Luodian (WZL) fault zone, the derived stress field in the study area exhibits maximum principal stress (σ 1 ) in the NEE–SWW direction. The Late Cretaceous stage (Late Yanshanian) is the second stage. Affected by the dextral strike slip of the WZL fault zone, the derived stress field exhibits σ 1 in the NNW–SSE direction. The folds and faults formed in the first stage were modified by the structural deformation in the second stage. The dominant strikes of joints in the sedimentary strata are found to be in the NW–NNW (300°–360°) and NE (30°–60°) directions, with dip angles mostly ranging from 60° to 90°. The dominant strikes of coal microfractures are in the NW (285°–304°) and NE (43°–53°) directions. The distribution of geostress in the study area is characterized by high levels of geostress in the syncline center, decreasing towards the surrounding periphery. The overall trend of the geostress contour line is similar to the shape of the syncline and is influenced by folds and faults. The σ 1 of coal seam No. 11 is vertical stress. The prediction results show that the joint density of coal seam No. 11 in the block is 36–50 joints/m, and the shape of the joint density contour line is also affected by the axial direction of the Dahebian syncline and the surrounding faults. The variation in coal seam joint density and the control effect of geostress on joints opening or closing affects the permeability of coal reservoirs. The study results provide significant guidance for the exploitation of CBM.

Keywords: joint; natural fractures; tectonic stress field; geostress; coalbed methane (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/101/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/101/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:101-:d:1306388

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:101-:d:1306388