EconPapers    
Economics at your fingertips  
 

Model of a Predictive Neural Network for Determining the Electric Fields of Training Flight Phases

Joanna Michalowska ()
Additional contact information
Joanna Michalowska: The Institute of Technical Sciences and Aviation, The University College of Applied Science in Chelm, Pocztowa 54, 22-100 Chełm, Poland

Energies, 2023, vol. 17, issue 1, 1-27

Abstract: Tests on the content of the electrical component of the electromagnetic field (EMF) were carried out with an NHT3DL broadband meter by Microrad using a 01E (100 kHz ÷ 6.5 GHz) measuring probe. Measurements were made during training flights (Cessna C172, Cessna C152, Aero AT3, and Technam P2006T aircrafts). A neural network was used, the task of which was to learn to predict the successive values of average ( E RMS ) and instantaneous ( E PEAK ) electromagnetic fields used here. Such a solution would make it possible to determine the most favorable routes for all aircrafts. This article presents a model of an artificial neural network which aims to predict the intensity of the electrical component of the electromagnetic field. In order to create the developed model, that is, to create a training sequence for the model, a series of measurements was carried out on four types of aircraft (Cessna C172, Cessna C152, Aero AT3, and Technam P2006T). The model was based on long short-term memory (LSTM) layers. The tests carried out showed that the accuracy of the model was higher than that of the reference method. The developed model was able to estimate the electrical component for the vicinity of the routes on which it was trained in order to optimize the exposure of the aircraft to the electrical component of the electromagnetic field. In addition, it allowed for data analysis of the same training flight routes. The reference point for the obtained electric energy results were the normative limits of the electromagnetic field that may affect the crew and passengers during a flight. Monitoring and measuring the electromagnetic field generated by devices is important from an environmental point of view, as well as for the purposes of human body protection and electromagnetic compatibility. In order to improve reliability in general aviation and to adapt to the proposed requirements, aviation training centers are obliged to introduce systems for supervising and analyzing flight parameters.

Keywords: electromagnetic field (EMF); aircraft; artificial neural network (ANN); long short-term memory (LSTM) neural network; prediction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/126/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/126/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:126-:d:1307321

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:126-:d:1307321