EconPapers    
Economics at your fingertips  
 

Design Optimization of Induction Motors with Different Stator Slot Rotor Bar Combinations Considering Drive Cycle

Farshid Mahmouditabar () and Nick J. Baker
Additional contact information
Farshid Mahmouditabar: School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
Nick J. Baker: School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Energies, 2023, vol. 17, issue 1, 1-26

Abstract: In this paper, a sequential Taguchi method for design optimization of an induction motor (IM) for an electric vehicle (EV) is presented. First, a series of empirical and mathematical relationships is systematically applied to reduce the number of possible stator slot rotor bar (SSRB) combinations. Then, the admissible optimal combinations are investigated and compared using finite element (FE) simulation over the NEDC driving cycle, and the three best combinations are selected for further analysis. Each topology is optimized over the driving cycle using the k-means clustering method to calculate the representative working points over the NEDC, US06, WLTP Class 3, and EUDC driving cycles. Then, using the Design of Experiment (DOE)-based Taguchi method, a multi-objective optimization is carried out. Finally, the performance of the optimized machines in terms of robustness against manufacturing tolerances, magnetic flux density distribution, mechanical stress analysis, nominal envelope curve and efficiency map is carried out to select the best stator slot rotor bar combination. It is also found that the K-means clustering method is not completely robust for the design of electric machines for electric vehicle traction motors. The method focuses on regions with high-density working points, and it is possible to miss the compliant with the required envelope curve.

Keywords: induction motor; electric vehicle; systematic design; Taguchi; lumped parameter method; k-means; thermal design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/154/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/154/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:154-:d:1308725

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:154-:d:1308725