Characterization of Uganda’s Main Agri-Food Value Chain Wastes for Gasification
Peter Wilberforce Olupot,
Tadeo Mibulo () and
Jacintha Gumoteyo Nayebare
Additional contact information
Peter Wilberforce Olupot: Department of Mechanical Engineering, Makerere University, Kampala P.O. Box 7062, Uganda
Tadeo Mibulo: Department of Mechanical Engineering, Makerere University, Kampala P.O. Box 7062, Uganda
Jacintha Gumoteyo Nayebare: Department of Geo-Informatics, Kyambogo University, Kampala P.O. Box 01, Uganda
Energies, 2023, vol. 17, issue 1, 1-17
Abstract:
Agricultural residues are a source of energy derived through various conversion processes. They are gaining attention as a solution to limited energy access in developing countries in which a majority of the population depends on agriculture for a living at a time when global population growth is outpacing the depreciation of conventional energy sources. This study characterized residues generated along the main agri-food value chains in Uganda for gasification by reviewing relevant literature and through field measurements and laboratory experiments. Maize, beans, cassava, banana, coffee, and sugarcane are the most important value chains, occupying 5.73 million hectares, and accounting for 40% of the country’s total area under cultivation. In terms of biomass residues, banana, maize, and sugarcane are the most feasible options, producing 4.18, 2.2, and 0.6 metric tons of biomass waste per ton, respectively. The bulk densities vary from 65.5 to 160 kg/m 3 , moisture content from 6.67 to 22.5%, and heating values from 12.6 to 16.74 MJ/kg for all residues. In terms of principal elements, oxygen has the highest proportion of 38.76–57.25% followed by carbon, 33.46–47.9%, and hydrogen 6%. The lignocellulosic composition is 23.46–41.38% hemicellulose, 9.9–55% cellulose, and 5.77–35% lignin. The three value chains have the potential to generate 172.2 PJ annually, which is enough to offset 50% of the cooking energy demands for Uganda. The main disadvantage of this is the low bulk density, which raises production costs and reduces conversion efficiency. Bulk density can be improved by densification through the compaction of residues. Given their composition and current utilization, maize stover, banana leaves, banana pseudo stems, and sugarcane tops are promising gasification feedstocks.
Keywords: agri-food value chains; maize; banana; sugarcane; gasification; Uganda (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/164/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/164/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:164-:d:1308902
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().