EconPapers    
Economics at your fingertips  
 

Hybrid (Optimal) Selection Model for Phase Change Materials Used in the Cold Energy Storage of Air Conditioning Systems

Shun-Hsiung Peng () and Shang-Lien Lo
Additional contact information
Shun-Hsiung Peng: Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
Shang-Lien Lo: Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan

Energies, 2023, vol. 17, issue 1, 1-15

Abstract: The latent heat storage of phase change materials (PCMs) can be used in refrigeration and air conditioning systems. Storing cool energy during the nighttime (off-peak hours) and releasing the cool energy during the daytime (on-peak hours) to reduce the number of starts of the chiller and pumps is a practical approach for achieving energy saving and carbon reduction. Therefore, selecting PCMs is vital for improving energy efficiency and preventing future energy shortages. However, selecting PCMs is complicated by their unique characteristics and types. The purpose of this study was to establish a PCM selection model by combining the Delphi, analytic hierarchy process (AHP), and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods to select the optimal PCM type applied in cold storage. A numerical example was used to verify the model’s usability, confirming that A9 is the optimal PCM for the cold storage of an air conditioning system. This three-stage PCM selection model combining the Delphi, AHP, and VIKOR approaches provides a more suitable selection model and considers the selection method of material criteria. Moreover, it can solve the problem of difficult PCM selection. Simultaneously, it considers mechanisms to incorporate a company’s primary considerations into material selection for real-world applications. These results can facilitate material evaluation and selection during system design and material qualification, helping companies achieve the goals of energy saving, carbon reduction, and sustainable management in the future.

Keywords: phase change material; cold storage; multi-criteria decision making; Delphi method; analytic hierarchy process method; VIKOR method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/63/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/63/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:63-:d:1305067

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:63-:d:1305067