EconPapers    
Economics at your fingertips  
 

An Improved Hybrid Approach for Daily Electricity Peak Demand Forecasting during Disrupted Situations: A Case Study of COVID-19 Impact in Thailand

Lalitpat Aswanuwath, Warut Pannakkong (), Jirachai Buddhakulsomsiri, Jessada Karnjana and Huynh Van-Nam ()
Additional contact information
Lalitpat Aswanuwath: School of Manufacturing Systems and Mechanical Engineering (MSME), Sirindhorn International Institute of Technology (SIIT), Thammasat University, 99 Moo 18, Paholyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
Warut Pannakkong: School of Manufacturing Systems and Mechanical Engineering (MSME), Sirindhorn International Institute of Technology (SIIT), Thammasat University, 99 Moo 18, Paholyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
Jirachai Buddhakulsomsiri: School of Manufacturing Systems and Mechanical Engineering (MSME), Sirindhorn International Institute of Technology (SIIT), Thammasat University, 99 Moo 18, Paholyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
Jessada Karnjana: National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park (TSP), Paholyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
Huynh Van-Nam: School of Knowledge Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan

Energies, 2023, vol. 17, issue 1, 1-31

Abstract: Accurate electricity demand forecasting is essential for global energy security, reducing costs, ensuring grid stability, and informing decision making in the energy sector. Disruptions often lead to unpredictable demand shifts, posing greater challenges for short-term load forecasting. Understanding electricity demand patterns during a pandemic offers insights into handling future disruptions. This study aims to develop an effective forecasting model for daily electricity peak demand, which is crucial for managing potential disruptions. This paper proposed a hybrid approach to address scenarios involving both government intervention and non-intervention, utilizing integration methods such as stepwise regression, similar day selection-based day type criterion, variational mode decomposition, empirical mode decomposition, fast Fourier transform, and neural networks with grid search optimization for the problem. The electricity peak load data in Thailand during the year of the COVID-19 situation is used as a case study to demonstrate the effectiveness of the approach. To enhance the flexibility and adaptability of the approach, the new criterion of separating datasets and the new criterion of similar day selection are proposed to perform one-day-ahead forecasting with rolling datasets. Computational analysis confirms the method’s effectiveness, adaptability, reduced input, and computational efficiency, rendering it a practical choice for daily electricity peak demand forecasting, especially in disrupted situations.

Keywords: hybrid approach; daily peak load forecasting; disrupted situation; VMD; EDM; FFT; similar day selection method; stepwise regression; artificial neural network; long short-term memory; COVID-19 (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/78/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/78/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:78-:d:1305656

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:78-:d:1305656