Quantifying the Operational Flexibility of Distributed Cross-Sectoral Energy Systems for the Integration of Volatile Renewable Electricity Generation
Sebastian Berg (),
Lasse Blaume and
Benedikt Nilges
Additional contact information
Sebastian Berg: Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
Lasse Blaume: Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
Benedikt Nilges: Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
Energies, 2023, vol. 17, issue 1, 1-17
Abstract:
As a part of the transition in higher-level energy systems, distributed cross-sectoral energy systems (DCESs) play a crucial role in providing flexibility in covering residual load (RL). However, there is currently no method available to quantify the potential flexibility of DCESs in covering RL. This study aimed to address this gap by comparing the RL demand of a higher-level energy system with the electricity flow between a DCES and the electricity grid. This can allow for the quantification of the flexibility of DCES operation. Our approach was to categorize existing methods for flexibility quantification and then propose a new method to assess the flexibility of DCESs in covering RL. For this, we introduced a new quantification indicator called the Flexibility Deployment Index (FDI), which integrates two factors: the RL of the higher-level energy system and the electricity purchase and feed-in of a DCES. By normalizing both factors, we could compare the flexibility to cover RL with respect to different DCES concepts and scenarios. To validate the developed quantification method, we applied it to a case study of a hospital’s DCES in Germany. Using an MILP optimization model, we analyzed the variation in FDI for different technology concepts and scenarios, including fixed electricity tariffs, dynamic electricity tariffs, and CO 2 -emission-optimized operation. The results of our calculations and the application of the FDI indicate that high-capacity combined heat and power units combined with thermal storage units provide higher flexibility. Additionally, the results highlight higher flexibility provision during the winter period compared to the summer period. However, further application and research are needed to confirm the robustness and validity of the FDI assessment. Nonetheless, the case study demonstrates the potential of the new quantification method.
Keywords: distributed cross-sectoral energy system; flexibility; optimized operation; quantification indicator; residual load (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/90/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/90/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:90-:d:1306057
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().