EconPapers    
Economics at your fingertips  
 

Multi-Objective Short-Term Optimal Dispatching of Cascade Hydro–Wind–Solar–Thermal Hybrid Generation System with Pumped Storage Hydropower

Jie Li, Linjun Shi () and Hao Fu ()
Additional contact information
Jie Li: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
Linjun Shi: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
Hao Fu: College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China

Energies, 2023, vol. 17, issue 1, 1-19

Abstract: Aiming to mitigate the impact of power fluctuation caused by large-scale renewable energy integration, coupled with a high rate of wind and solar power abandonment, the multi-objective optimal dispatching of a cascade hydro–wind–solar–thermal hybrid generation system with pumped storage hydropower (PSH) is proposed in this paper. Based on the proposed system, the scheduling operation strategy takes into account the complex restrictions of cascade hydropower as well as the flexibility of the PSH. According to various scenarios, the NSGA-II approach is adopted to address the optimization problem, minimizing the system’s residual load variation and operation cost. The Pareto solution sets are contrasted and evaluated, applying the TOPSIS with CRITIC weighting. Additionally, the scheduling output of thermal power, cascade hydropower, and PSH is given in terms of different scenarios. The results demonstrate that the allocation of PSH to a hybrid energy system can significantly reduce the operation cost and the fluctuation in the residual load.

Keywords: cascade hydropower; hybrid generation system; optimal dispatching; pumped storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/1/98/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/1/98/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2023:i:1:p:98-:d:1306309

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:98-:d:1306309