EconPapers    
Economics at your fingertips  
 

Analysis of Grid Performance with Diversified Distributed Resources and Storage Integration: A Bilevel Approach with Network-Oriented PSO

Ahmad El Sayed () and Gokturk Poyrazoglu
Additional contact information
Ahmad El Sayed: Electrical and Electronics Engineering Department, Ozyegin University, Istanbul 34794, Turkey
Gokturk Poyrazoglu: Electrical and Electronics Engineering Department, Ozyegin University, Istanbul 34794, Turkey

Energies, 2024, vol. 17, issue 10, 1-21

Abstract: The growing deployment of distributed resources significantly affects the distribution grid performance in most countries. The optimal sizing and placement of these resources have become increasingly crucial to mitigating grid issues and reducing costs. Particle Swarm Optimization (PSO) is widely used to address such problems but faces computational inefficiency due to its numerical convergence behavior. This limits its effectiveness, especially for power system problems, because the numerical distance between two nodes in power systems might be different from the actual electrical distance. In this paper, a scalable bilevel optimization problem with two novel algorithms enhances PSO’s computational efficiency. While the resistivity-driven algorithm strategically targets low-resistivity regions and guides PSO toward areas with lower losses, the connectivity-driven algorithm aligns solution spaces with the grid’s physical topology. It prioritizes actual physical neighbors during the search to prevent local optima traps. The tests of the algorithms on the IEEE 33-bus and the 69-bus and Norwegian networks show significant reductions in power losses (up to 74% for PV, wind, and storage) and improved voltage stability (a 21% reduction in mean voltage deviation index) with respect to the results of classical PSO. The proposed network-oriented PSO outperforms classical PSO by achieving a 2.84% reduction in the average fitness value for the IEEE 69-bus case with PV, wind, and storage deployment. The Norwegian case study affirms the effectiveness of the proposed approach in real-world applications through significant improvements in loss reduction and voltage stability.

Keywords: connectivity; DER; distribution system; PSO; resistivity; sizing; sitting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/10/2270/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/10/2270/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:10:p:2270-:d:1390637

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2270-:d:1390637