EconPapers    
Economics at your fingertips  
 

Practical Experiments with a Ready-Made Strategy for Energizing a Suitable Pre-Magnetized Three-Column Three-Phase Dy Transformer in Unloaded State for Inrush Current Computations

Marian Łukaniszyn (), Łukasz Majka (), Bernard Baron, Marcin Sowa, Krzysztof Tomczewski and Krzysztof Wróbel
Additional contact information
Marian Łukaniszyn: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland
Łukasz Majka: Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka Street 10, 44-100 Gliwice, Poland
Bernard Baron: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland
Marcin Sowa: Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka Street 10, 44-100 Gliwice, Poland
Krzysztof Tomczewski: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland
Krzysztof Wróbel: Department of Drive Automation and Robotics, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska Street 76, 45-272 Opole, Poland

Energies, 2024, vol. 17, issue 10, 1-22

Abstract: This article presents the results of an experimental verification of three-phase Dy transformer dynamics under no-load conditions. This study is motivated by previous ferroresonance analyses where the occurrence of inrush currents has been observed. The measurements covered all available electrical quantities in a transient state (12 measured and 3 additionally computed waveforms) during the device’s start-up under no-load conditions, as well as in a long-term steady state. A detailed analytical analysis is carried out for the obtained comprehensive set of measurement results. As a result of the conducted research, the mathematical model of the pre-magnetized three-phase Dy transformer is modified. Particular attention is paid to the issue of residual magnetism of the transformer core and its consideration in further research. The original strategy for energizing a three-column three-phase Dy transformer with a suitable pre-magnetization of its columns and original control switching system with a given/set value of the initial phase in the supply voltage is put to the test. The evolution of the induced inrush phenomenon up to the quasi-steady state under given (forced) conditions is documented (currents, voltages and the dynamics of changes taking place in the core (hysteresis loops)). This article represents a continuation of ongoing work on the study of transient states (dynamics of transformer inrush currents). At present, the Dy three-phase transformer is analyzed because of the requirements of industrial operators.

Keywords: three-phase three-legged core Dy transformer; inrush current phenomenon; system for pre-magnetizing; point-on-wave switching; electromagnetic transients; transient phase imbalance; waveform distortion (harmonics); quasi-steady state (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/10/2298/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/10/2298/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:10:p:2298-:d:1391790

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2298-:d:1391790