Using Generative Pre-Trained Transformers (GPT) for Electricity Price Trend Forecasting in the Spanish Market
Alberto Menéndez Medina and
José Antonio Heredia Álvaro ()
Additional contact information
Alberto Menéndez Medina: Cátedra Industria 4.0, Universitat Jaume I, 12071 Castellón, Spain
José Antonio Heredia Álvaro: Cátedra Industria 4.0, Universitat Jaume I, 12071 Castellón, Spain
Energies, 2024, vol. 17, issue 10, 1-15
Abstract:
The electricity market in Spain holds significant importance in the nation’s economy and sustainability efforts due to its diverse energy mix that encompasses renewables, fossil fuels, and nuclear power. Accurate energy price prediction is crucial in Spain, influencing the country’s ability to meet its climate goals and ensure energy security and affecting economic stakeholders. We have explored how leveraging advanced GPT tools like OpenAI’s ChatGPT to analyze energy news and expert reports can extract valuable insights and generate additional variables for electricity price trend prediction in the Spanish market. Our research proposes two different training and modelling approaches of generative pre-trained transformers (GPT) with specialized news feeds specific to the Spanish market: in-context example prompts and fine-tuned GPT models. We aim to shed light on the capabilities of GPT solutions and demonstrate how they can augment prediction models by introducing additional variables. Our findings suggest that insights derived from GPT analysis of electricity news and specialized reports align closely with price fluctuations post-publication, indicating their potential to improve predictions and offer deeper insights into market dynamics. This endeavor can support informed decision-making for stakeholders in the Spanish electricity market and companies reliant on electricity costs and price volatility for their margins.
Keywords: electricity market price; Spain; Generative AI; GPT; sentiment analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/10/2338/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/10/2338/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:10:p:2338-:d:1393354
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().