EconPapers    
Economics at your fingertips  
 

Viability of an Open-Loop Heat Pump Drying System in South African Climatic Conditions

Solomzi Marco Ngalonkulu () and Zhongjie Huan
Additional contact information
Solomzi Marco Ngalonkulu: Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Staatsartillerie Road, Pretoria West, Pretoria 0183, South Africa
Zhongjie Huan: Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Staatsartillerie Road, Pretoria West, Pretoria 0183, South Africa

Energies, 2024, vol. 17, issue 10, 1-14

Abstract: Drying agricultural produce consumes a considerable amount of energy. As an energy-efficient system, a heat pump can improve the energy efficiency of the drying process and hence reduce the energy consumption, especially in South Africa, where both sub-tropical and temperate weather conditions dominate. The objective of this research is to experimentally investigate the impacts of weather conditions on the operational conditions and thermal performance of an open-loop air-source heat pump drying system. The experimental investigation was conducted in a climate chamber where the climate conditions were simulated from −10 °C to 20 °C with an interval of 10 °C for the typical temperature range of the harvesting season in South Africa. The findings indicate that ambient temperatures have a significant impact on both the operating conditions and thermal performance of an open-loop heat pump system; the change in ambient temperatures from −10 °C to 20 °C leads to a 141.6% improvement in the suction pressure, a 214.2% increase in the discharge pressure, and 30.1% increase in the compression ratio, as well as a consequent increase of 130.6% in the refrigerant mass flow rate (from 0.0067 to 0.0155 kg/s), resulting in a corresponding increase in the coefficient of performance (COP) of the heat pump drying system by about 42.1%. Therefore, this study suggests that, while using an open-loop air-source heat pump drying system utilising R134a refrigerant is feasible in South Africa, it may be practically limited to regions with warm climates or during warmer seasons.

Keywords: heat pump drying; ambient temperatures; thermal performance; mass flow rate; COP (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/10/2432/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/10/2432/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:10:p:2432-:d:1397749

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2432-:d:1397749