Municipal Sewage Sludge as a Resource in the Circular Economy
Mariusz Z. Gusiatin (),
Dorota Kulikowska and
Katarzyna Bernat
Additional contact information
Mariusz Z. Gusiatin: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland
Dorota Kulikowska: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland
Katarzyna Bernat: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland
Energies, 2024, vol. 17, issue 11, 1-25
Abstract:
Municipal sewage sludge (MSS) is an inevitable byproduct of wastewater treatment, with increasing amounts year by year worldwide. The development of environmentally and economically acceptable methods for the sustainable management of MSS is a major environmental challenge. Nowadays, sludge management practices, besides the commonly used stabilization methods, focus attention on alternative sludge-disposal pathways, which encompass enhanced energy and valuable-resource recovery. This review presents the recent advances in the recovery of selected value-added products from sludge. Because of the high nitrogen and phosphorus concentrations, waste MSS can be a nutrient source (e.g., struvite). This paper discusses the conditions of and advances in the technology of struvite recovery. As in the extracellular polymeric substances (EPSs) of biological sludge, alginate-like exopolymers (ALEs) are present in MSS systems that treat municipal wastewater. The yields, dynamics in content, and characterization of ALEs and their possible applications were analyzed. MSS is an important source of humic substances. Their occurrence, characterization, and yields in various types of MSS (e.g., untreated, composted, and digested sludge) and main methods of application are presented. The important aspects and trends of MSS pyrolysis, including the thermochemical conversion to biochar, are discussed in this review. The characterization of biochar derived from MSS and the assessment of the environmental risks are also covered. This paper explores the potential use of biochar derived from MSS in various applications, including soil amendment, carbon sequestration, and environmental remediation.
Keywords: waste; struvite; alginate-like exopolymers; biopolymer; pyrolysis; biochar; value-added products (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2474/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2474/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2474-:d:1399300
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().