Numerical Study on Steam Cooling Characteristics in a Isosceles Trapezoidal Channel with Pin-Fin Arrays at Turbine Blade Trailing Edge
Lei Xi,
Yuan Gao,
Qicheng Ruan,
Jianmin Gao,
Liang Xu () and
Yunlong Li
Additional contact information
Lei Xi: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yuan Gao: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Qicheng Ruan: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Jianmin Gao: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Liang Xu: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yunlong Li: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Energies, 2024, vol. 17, issue 11, 1-23
Abstract:
Using the SST k-ω turbulence model, a comprehensive numerical investigation was conducted to analyze the flow and heat transfer characteristics of steam within an isosceles trapezoidal cooling channel with pin-fin arrays modeled from the trailing edge of a F-class gas turbine high-temperature blade. The influence laws of various parameters, including the Reynolds number ( Re , from 10,000 to 50,000), dimensionless pin-fin diameter ( d / H , from 0.4 to 0.8), and dimensionless pin-fin spacing ( S / H , from 1.6 to 2.4), on the flow and heat transfer performance of the isosceles trapezoidal cooling channel with pin-fin arrays were examined. Sensitivity analysis was employed to determine the relative significance of these influence parameters on the cooling performance of the isosceles trapezoidal channel with pin-fin arrays. Finally, the corresponding heat transfer and friction correlations within the investigated parameter range were developed. The research findings reveal that under different Reynolds numbers, as the dimensionless pin-fin diameter increases from 0.4 to 0.8, the friction factor within the isosceles trapezoidal cooling channel with pin-fin arrays increases by a factor of 3.25 to 3.41, while the overall average Nusselt number improves by 31.05% to 37.41%. Conversely, when the dimensionless pin-fin spacing increases from 1.6 to 2.4, the friction factor within the isosceles trapezoidal cooling channel with pin-fin arrays decreases by 67.38% to 69.18%, accompanied by a reduction in the overall average Nusselt number by 24.95% to 31.14%. When both the flow performance and heat transfer performance are taken into account, the importance of the influence parameters ranks as follows: Reynolds number, pin-fin diameter, and pin-fin spacing. It also suggests that smaller pin-fin diameters and larger pin-fin spacing should be selected in the design stage based on the variation laws of integrated thermal-hydraulic performance. The results may provide valuable references and insights for the design of steam cooling structures within high-temperature turbine blade trailing edge channels in advanced gas turbines.
Keywords: trailing edge; isosceles trapezoidal channel; pin-fin; steam cooling; flow and heat transfer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2482/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2482/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2482-:d:1399359
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().