Assessing the Impact of Organic Loading Rate on Hydrogen Consumption Rates during In Situ Biomethanation
Ali Dabestani-Rahmatabad,
Gabriel Capson-Tojo,
Eric Trably,
Jean-Philippe Delgenès and
Renaud Escudié ()
Additional contact information
Ali Dabestani-Rahmatabad: Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
Gabriel Capson-Tojo: Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
Eric Trably: Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
Jean-Philippe Delgenès: Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
Renaud Escudié: Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
Energies, 2024, vol. 17, issue 11, 1-20
Abstract:
Biogas upgrading via biomethanation has been extensively studied recently, but the influence of organic loading rate on process performance remains to be fully understood. This is particularly significant because both organic loading rate and hydrogen injection can lead to volatile fatty acid accumulation during anaerobic digestion. This study investigated the impact of a wide range of organic loading rates (from 1.25 to 3.25 g VS/L/d) on hydrogen consumption rates, organic acid accumulation, and microbial communities during in situ biomethanation. It also provided kinetics data and metabolite production data for different control reactors, including anaerobic digestion, ex situ biomethanation, and endogenous control reactors. Hydrogen was injected into parallel batch reactors using digestate from a semi-continuous lab-scale reactor subjected to increasing organic loading rates (1.25–3.25 g VS/L/d) as an inoculum. The inoculum was well adapted to each tested organic loading rate. The batch experiments were replicated following a 12 h hydrogen starvation period to assess the stability of hydrogen consumption rates. High organic loading rate values resulted in increased hydrogen consumption rates, peaking at 68 mg COD/L/h at an organic loading rate of 3.25 g VS/L/d (maximum value tested), with no significant organic acid accumulation despite the high hydrogen partial pressures. The hydrogen consumption rates were maintained after the starvation period. Furthermore, the addition of an organic substrate did not impact the hydrogen consumption rate (i.e., the in situ and ex situ rates were similar). A higher organic loading rate resulted in higher relative abundances of hydrogenotrophic methanogens (i.e., Methanospirillum sp.). This study highlights that increasing the organic loading rate can accelerate the rate of hydrogen consumption during in situ biomethanation, consequently reducing both capital and operational costs.
Keywords: in situ biomethanation; organic loading rate; biogas upgrading; hydrogenotrophy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2490/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2490/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2490-:d:1399503
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().