Combustion Characteristics of Sinusoidal-Shaped Walls with Catalyst Segmentation in Micro-Combustors for Micro-Thermophotovoltaic Application
Qi Yuan,
Zhiping Guo () and
Yuan Li
Additional contact information
Qi Yuan: College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010080, China
Zhiping Guo: School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Yuan Li: College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010080, China
Energies, 2024, vol. 17, issue 11, 1-15
Abstract:
The combustion characteristics of micro-combustors significantly impact the performance of micro-thermophotovoltaic (MTPV) systems. This study aims to investigate the effects of sinusoidal-shaped walls and catalyst segmentation on flame stability and combustion performance in a micro-combustor by using numerical methods. The numerical simulation with detailed gas-phase and surface reaction mechanisms is reliable, as the results of numerical simulation align with experimental data. The results show that the interplay between flame stability and sinusoidal-shaped walls is crucial, particularly because of the cavities formed by the sinusoidal-shaped walls of the micro-combustor. The gas-phase ignition position of the sinusoidal-shaped wall combustor moves upstream by 0.050 m compared to the planar-wall combustor, but the flame is stretched. The catalyst segments coated on the crest can shorten the flame length and increase the average temperature by a maximum 62 K, but delay the gas-phase ignition. Conversely, catalyst segments coated on the trough can advance ignition, but this results in flame elongation and a decrease in the average temperature. The rational combination of catalyst segmentation and sinusoidal-shaped walls facilitates moving the ignition position upstream by a maximum of 0.065 m while substantially reducing the length of the combustor required for complete fuel conversion by more than 60%. These attributes are highly beneficial for improving efficiency and minimizing the length of the micro-combustor for MTPV application.
Keywords: sinusoidal-shaped wall; catalyst segmentation; flame stability; micro-combustion; MTPV system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2560/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2560/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2560-:d:1401705
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().