EconPapers    
Economics at your fingertips  
 

Novel Hierarchical Energy Management System for Enhanced Black Start Capabilities at Distribution and Transmission Networks

Ayse Colak, Mohamed Abouyehia and Khaled Ahmed ()
Additional contact information
Ayse Colak: Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
Mohamed Abouyehia: Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
Khaled Ahmed: Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK

Energies, 2024, vol. 17, issue 11, 1-27

Abstract: A novel energy management system featuring a unique framework involving multiple hierarchical controllers at the distribution and transmission network levels is proposed. The unique objective function of this energy management system is designed to enhance system inertia during black start and optimise load shedding. The objective function further aims to increase reliance on renewable energy sources, prioritising solar power along with battery and fuel cell technologies. This work delves deeply into the dynamics of multi-area power networks, where some areas possess black start capabilities (BSAs) while others do not (NBSAs). The proposed energy management system specifically explores the complex interplay between these black start capabilities and the hierarchical load restoration order. During grid blackouts, the systems located in BSA areas are tasked with first restoring essential loads in their own regions before extending aid to the adjacent NBSA areas, taking into account factors such as their available reserved power and geographical proximity. This work is extended to analyse complex multi-area power network architectures. This extended analysis provides invaluable insights for enhancing power restoration processes and facilitating the large-scale integration of sustainable energy solutions in complex systems. The proposed energy management system is validated using the IEEE 39-Bus network, which consists of ten distinct areas, each differing in their black start capabilities. The results demonstrate the superiority of the proposed system.

Keywords: hierarchical energy management; black start capabilities; system inertia optimisation and renewable energy integration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2605/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2605/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2605-:d:1403857

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2605-:d:1403857