EconPapers    
Economics at your fingertips  
 

Deep and Reinforcement Learning in Virtual Synchronous Generator: A Comprehensive Review

Xiaoke Ding and Junwei Cao ()
Additional contact information
Xiaoke Ding: Department of Automation, Tsinghua University, Beijing 100084, China
Junwei Cao: Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

Energies, 2024, vol. 17, issue 11, 1-20

Abstract: The virtual synchronous generator (VSG) is an important concept and primary control method in modern power systems. The penetration of power-electronics-based distributed generators in the power grid provides uncertainty and reduces the inertia of the system, thus increasing the risk of instability when disturbance occurs. The VSG produces virtual inertia by introducing the dynamic characteristics of the synchronous generator, which provides inertia and becomes a grid-forming control method. The disadvantages of the VSG are that there are many parameters to be adjusted and its operation process is complicated. However, with the rapid development of artificial intelligence (AI) technology, the powerful adaptive learning capability of AI algorithms provides potential solutions to this issue. Two research hotspots are deep learning (DL) and reinforcement learning (RL). This paper presents a comprehensive review of these two techniques combined with VSG control in the energy internet (EI). Firstly, the basic principle and classification of the VSG are introduced. Next, the development of DL and RL algorithms is briefly reviewed. Then, recent research on VSG control based on DL and RL algorithms are summarized. Finally, some main challenges and study trends are discussed.

Keywords: virtual synchronous generator; artificial intelligence; deep learning; reinforcement learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2620/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2620/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2620-:d:1404567

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2620-:d:1404567