EconPapers    
Economics at your fingertips  
 

Combined Geometrical Optimisation of a Square Microchannel with Smoothed Corners

Marco Lorenzini () and Nicola Suzzi
Additional contact information
Marco Lorenzini: Industrial Engineering Department—DIN, Alma Mater Studiorum, Università di Bologna, Forlì Campus, Via Fontanelle 40, 47121 Forlì, Italy
Nicola Suzzi: Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy

Energies, 2024, vol. 17, issue 11, 1-22

Abstract: Several engineering systems currently use microchannel heat sinks. In order to increase the performance of these devices, optimisation according to the first and second law of thermodynamics is employed. One way to achieve the goal is to modify the geometry of the cross-section, as is done in this paper for square ducts, having the walls at a uniform temperature which is higher than that of the bulk fluid at the inlet. The effects of both the thermal entry region of the duct and the heat generation due to viscous dissipation are considered. The resulting Graetz–Brinkman problem is solved numerically to obtain the velocity and temperature fields. It is demonstrated that non-negligible viscous heating eventually causes the heat flux to reverse (from fluid to walls), and that, only after this condition is achieved, can the flow become fully developed, which makes the entry region the only useful stretch for real-life applications. The length after which the direction of the heat flux reverses due to viscous heating in the fluid is obtained as a function of the Brinkman number and of the smoothing radius. Optimisation with performance evaluation criteria and entropy generation minimisation was carried out separately, and the results were combined into a single objective function. A comparison with published models highlights how neglecting the entry region and viscous heating yields misleading results. It turns out that smoothing the corners is always profitable in the case of the constrained heated perimeter or area of the cross-section but seldom when the characteristic length or the hydraulic diameter is fixed. With few exceptions, viscous heating amplifies the trends experienced for zero-Brinkman flows. The results are in non-dimensional form, yet they have been obtained starting from plausible dimensional values and are applicable to real-life devices.

Keywords: microchannels; viscous heating; Graetz–Brinkman problem; entropy analysis; thermodynamic optimisation; performance evaluation criteria (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2666/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2666/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2666-:d:1405688

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2666-:d:1405688