EconPapers    
Economics at your fingertips  
 

Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial–Temporal Optimization Model

Yuxiu Chen (), Liyan Quan () and Jian Yu
Additional contact information
Yuxiu Chen: Research Center for Environment and Sustainable Development of the China Civil Aviation, Tianjin 300300, China
Liyan Quan: Research Center for Environment and Sustainable Development of the China Civil Aviation, Tianjin 300300, China
Jian Yu: Civil Aviation Management Institute of China, Beijing 100102, China

Energies, 2024, vol. 17, issue 11, 1-18

Abstract: Aircraft taxiing emissions are the main source of carbon dioxide and other pollutant gas emissions during airport ground operations. It is crucial to optimize aircraft taxiing from both spatial and temporal perspectives to improve airport operation efficiency and reduce aviation emissions. In this paper, a bilevel spatial and temporal optimization model of aircraft taxiing is constructed. The upper-level model optimizes the aircraft taxiing path, and the lower-level model optimizes the taxiing start time of the aircraft. By the iterative optimization of the upper- and lower-level interactions, the aviation fuel consumption, flight waiting time, and number of taxiing conflicts are reduced. To improve the calculation accuracy, the depth-first search algorithm is utilized to generate the set of available paths for aircraft during the model solution process, and a model solution method based on the genetic algorithm is constructed. Simulation experiments using Tianjin Binhai International Airport as the research object show that adopting the waiting taxiing strategy can effectively avoid taxiing conflicts and reduce aviation fuel consumption by 753.18 kg and 188.84 kg compared to the available path sets generated using Dijkstra’s algorithm and those created manually based on experience, respectively. Conversely, adopting an immediate taxi-out strategy caused 54 taxiing conflicts and increased aviation fuel consumption by 49.44 kg. These results can provide safe and environmentally friendly taxiing strategies for the sustainable development of the air transportation industry.

Keywords: taxi path optimization; aviation emissions; bilevel spatial–temporal optimization model; depth first search; genetic algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2692/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2692/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2692-:d:1407162

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2692-:d:1407162