EconPapers    
Economics at your fingertips  
 

Microgrid Fault Detection Method Based on Lightweight Gradient Boosting Machine–Neural Network Combined Modeling

Zhiye Lu, Lishu Wang and Panbao Wang ()
Additional contact information
Zhiye Lu: School of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
Lishu Wang: School of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
Panbao Wang: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150006, China

Energies, 2024, vol. 17, issue 11, 1-19

Abstract: The intelligent architecture based on the microgrid (MG) system enhances distributed energy access through an effective line network. However, the increased paths between power sources and loads complicate the system’s topology. This complexity leads to multidirectional line currents, heightening the risk of current loops, imbalances, and potential short-circuit faults. To address these challenges, this study proposes a new approach to accurately locate and identify faults based on MG lines. Initially, characteristic indices such as fault voltage, voltage fundamentals at each MG measurement point, and extracted features like peak voltage values in specific frequency bands, phase-to-phase voltage differences, and the sixth harmonic components are utilized as model inputs. Subsequently, these features are classified using the Lightweight Gradient Boosting Machine (LightGBM), complemented by the bagging (Bootstrap Aggregating) ensemble learning algorithm to consolidate multiple strong LightGBM classifiers in parallel. The output classification results of the integrated model are then fed into a neural network (NN) for further training and learning for fault-type identification and localization. In addition, a Shapley value analysis is introduced to quantify the contribution of each feature and visualize the fault diagnosis decision-making process. A comparative analysis with existing methodologies demonstrates that the LightGBM-NN model not only improves fault detection accuracy but also exhibits greater resilience against noise interference. The introduction of the bagging method, by training multiple base models on the initial classification subset of LightGBM and aggregating their prediction results, can reduce the model variance and prevent overfitting, thus improving the stability and accuracy of fault detection in the combined model and making the interpretation of the Shapley value more stable and reliable. The introduction of the Shapley value analysis helps to quantify the contribution of each feature to improve the transparency and understanding of the combined model’s troubleshooting decision-making process, reduces the model’s subsequent collection of data from different line operations, further optimizes the collection of line feature samples, and ensures the model’s effectiveness and adaptability.

Keywords: microgrid; fault localization; fault detection; integrated learning; neural network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2699/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2699/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2699-:d:1407369

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2699-:d:1407369