EconPapers    
Economics at your fingertips  
 

Automotive e-Fuels via Hydrocracking of FT-Wax: e-Gasoline and e-Diesel Production

Athanasios Dimitriadis, Loukia P. Chrysikou and Stella Bezergianni ()
Additional contact information
Athanasios Dimitriadis: Laboratory of Environmental Fuels and Hydrocarbons—LEFH, Chemical Process & Energy Resources Institute—CPERI, Centre for Research and Technology Hellas—CERTH, 6 km Harilaou-Thermi, 57001 Thessaloniki, Greece
Loukia P. Chrysikou: Laboratory of Environmental Fuels and Hydrocarbons—LEFH, Chemical Process & Energy Resources Institute—CPERI, Centre for Research and Technology Hellas—CERTH, 6 km Harilaou-Thermi, 57001 Thessaloniki, Greece
Stella Bezergianni: Laboratory of Environmental Fuels and Hydrocarbons—LEFH, Chemical Process & Energy Resources Institute—CPERI, Centre for Research and Technology Hellas—CERTH, 6 km Harilaou-Thermi, 57001 Thessaloniki, Greece

Energies, 2024, vol. 17, issue 11, 1-18

Abstract: The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were called e-fuels. The FT-wax was produced via the Fischer–Tropsch synthesis of syngas stream from the chemical looping gasification (CLG) of biogenic residues. For the hydrocracking tests, a continuous-operation TRL3 (Technology Readiness Level) pilot plant was utilized. At first, hydrocracking catalyst screening was performed for the upgrading of the FT-wax. Three hydrocracking catalysts were investigated (Ni-W, Ni-W zeolite-supported, and Ni-W Al 2 O 3 -supported catalyst) via various operating conditions to identify the optimal operating window for each one. These three catalysts were selected, as they are typical catalysts that are used in the petroleum refinery industry. The optimal catalyst was found to be the NiW catalyst, as it led to high e-fuel yields (38 wt% e-gasoline and 47 wt% e-diesel) with an average hydrogen consumption. The optimum operating window was found at a 603 K reactor temperature, 8.3 MPa system pressure, 1 hr ?1 LHSV, and 2500 scfb H 2 /oil ratio. In the next phase, the production of 5 L of hydrocracked wax was performed utilizing the optimum NiW catalyst and the optimal operating parameters. The liquid product was further fractionated to separate the fractions of e-gasoline, e-diesel, and e-heavy fuel. The e-gasoline and e-diesel fractions were qualitatively assessed, indicating that they fulfilled almost all EN 228 and EN 590 for petroleum-based gasoline and diesel, respectively. Furthermore, a 12-month storage study showed that the product can be stored for a period of 4 months in ambient conditions. In general, green transportation e-fuels with favorable properties that met most of the fossil fuels specifications were produced successfully from the hydrocracking of FT-wax.

Keywords: e-fuels; hydrocracking; Fischer–Tropsch wax; hydrotreatment; biofuel; wax (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2756/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2756/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2756-:d:1408981

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2756-:d:1408981