Economic Optimal Scheduling of Integrated Energy System Considering Wind–Solar Uncertainty and Power to Gas and Carbon Capture and Storage
Yunlong Zhang,
Panhong Zhang (),
Sheng Du and
Hanlin Dong
Additional contact information
Yunlong Zhang: Power China Hubei Electric Engineering, Wuhan 430040, China
Panhong Zhang: School of Finance, Hubei University of Economics, Wuhan 430205, China
Sheng Du: School of Automation, China University of Geosciences, Wuhan 430074, China
Hanlin Dong: Power China Hubei Electric Engineering, Wuhan 430040, China
Energies, 2024, vol. 17, issue 11, 1-26
Abstract:
With the shortage of fossil energy and the increasingly serious environmental problems, renewable energy based on wind and solar power generation has been gradually developed. For the problem of wind power uncertainty and the low-carbon economic optimization problem of an integrated energy system with power to gas (P2G) and carbon capture and storage (CCS), this paper proposes an economic optimization scheduling strategy of an integrated energy system considering wind power uncertainty and P2G-CCS technology. Firstly, the mathematical model of the park integrated energy system with P2G-CCS technology is established. Secondly, to address the wind power uncertainty problem, Latin hypercube sampling (LHS) is used to generate a large number of wind power scenarios, and the fast antecedent elimination technique is used to reduce the scenarios. Then, to establish a mixed integer linear programming model, the branch and bound algorithm is employed to develop an economic optimal scheduling model with the lowest operating cost of the system as the optimization objective, taking into account the ladder-type carbon trading mechanism, and the sensitivity of the scale parameters of P2G-CCS construction is analyzed. Finally, the scheduling scheme is introduced into a typical industrial park model for simulation. The simulation result shows that the consideration of the wind uncertainty problem can further reduce the system’s operating cost, and the introduction of P2G-CCS can effectively help the park’s integrated energy system to reduce carbon emissions and solve the problem of wind and solar power consumption. Moreover, it can more effectively reduce the system’s operating costs and improve the economic benefits of the park.
Keywords: integrated energy systems; economically optimized dispatch; landscape uncertainty; carbon trading; P2G-CCS (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/11/2770/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/11/2770/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:11:p:2770-:d:1409295
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().