Influence of γ-Fe 2 O 3 Nanoparticles Added to Gasoline–Bio-Oil Blends Derived from Plastic Waste on Combustion and Emissions Generated in a Gasoline Engine
Paul Palmay (),
Diego Barzallo,
Cesar Puente,
Ricardo Robalino,
Dayana Quinaluisa and
Joan Carles Bruno
Additional contact information
Paul Palmay: Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador
Diego Barzallo: Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador
Cesar Puente: Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador
Ricardo Robalino: Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador
Dayana Quinaluisa: Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH, Panamericana Sur Km 1 1/2, Riobamba 060155, Ecuador
Joan Carles Bruno: Department of Mechanical Engineering, Universitat Rovira i Virgili, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain
Energies, 2024, vol. 17, issue 12, 1-13
Abstract:
The environmental pressure to reduce the use of fossil fuels such as gasoline generates the need to search for new fuels that have similar characteristics to conventional fuels. In this sense, the objective of the present study is the use of commercial gasoline in mixtures with pyrolytic oil from plastic waste and the addition of γ-Fe 2 O 3 nanoparticles (NPs) in a spark ignition engine to analyze both the power generated in a real engine and the emissions resulting from the combustion process. The pyrolytic oil used was obtained from thermal pyrolysis at low temperatures (450 °C) of a mixture composed of 75% polystyrene (PS) and 25% polypropylene (PP), which was mixed with 87 octane commercial gasoline in 2% and 5% by volume and 40 mg of γ-Fe 2 O 3 NPs. A standard sample was proposed, which was only gasoline, one mixture of gasoline with bio-oil, and a gasoline, bio-oil, and NPs mixture. The bio-oil produced from the pyrolysis of PS and PP enhances the octane number of the fuel and improves the engine’s power performance at low revolutions. In contrast, the addition of iron NPs significantly improves gaseous emissions with a reduction in emissions of CO (carbon monoxide), NOx (nitrogen oxide), and HCs (hydrocarbons) due to its advantages, which include its catalytic effect, presence of active oxygen, and its large surface area.
Keywords: waste plastic; pyrolytic oil; ?-Fe 2 O 3 nanoparticles; engine performance; combustion emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/12/2843/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/12/2843/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:12:p:2843-:d:1411776
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().