Thermoacoustic Modeling of Cryogenic Hydrogen
Konstantin I. Matveev () and
Jacob W. Leachman
Additional contact information
Konstantin I. Matveev: Hydrogen Properties for Energy Research (HYPER) Center, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
Jacob W. Leachman: Hydrogen Properties for Energy Research (HYPER) Center, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
Energies, 2024, vol. 17, issue 12, 1-13
Abstract:
Future thermoacoustic cryocoolers employing hydrogen as a working fluid can reduce reliance on helium and improve hydrogen liquefaction processes. Traditional thermoacoustic modeling methods often assume ideal-gas thermophysical properties and neglect finite-amplitude effects. However, these assumptions are no longer valid for hydrogen near saturated states. In this study, a comparison between the results of computational fluid dynamics simulations using actual hydrogen properties and a low-amplitude, ideal-gas thermoacoustic theory was carried out in a canonical plate-based stack configuration at a mean pressure of 5 bar. It was found that the simplified analytical theory significantly underpredicts the cooling power of hydrogen-filled thermoacoustic setups, especially at lower temperatures in high-amplitude, traveling-wave arrangements. In addition, a thermoacoustic prime mover was modeled at higher temperatures, demonstrating very close agreement with the ideal-gas-based theory. The CFD approach is recommended for the design of future hydrogen-based cryocoolers at temperatures below 80 K.
Keywords: thermoacoustics; computational fluid dynamics; cryogenics; hydrogen (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/12/2884/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/12/2884/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:12:p:2884-:d:1413402
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().