A Multiscale Hybrid Wind Power Prediction Model Based on Least Squares Support Vector Regression–Regularized Extreme Learning Machine–Multi-Head Attention–Bidirectional Gated Recurrent Unit and Data Decomposition
Yuan Sun and
Shiyang Zhang ()
Additional contact information
Yuan Sun: School of Mechanical Engineering, Shanghai Dianji University, No. 300, Shuihua Road, Pudong New Area District, Shanghai 201306, China
Shiyang Zhang: School of Mechanical Engineering, Shanghai Dianji University, No. 300, Shuihua Road, Pudong New Area District, Shanghai 201306, China
Energies, 2024, vol. 17, issue 12, 1-21
Abstract:
Ensuring the accuracy of wind power prediction is paramount for the reliable and stable operation of power systems. This study introduces a novel approach aimed at enhancing the precision of wind power prediction through the development of a multiscale hybrid model. This model integrates advanced methodologies including Improved Intrinsic Mode Function with Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), permutation entropy (PE), Least Squares Support Vector Regression (LSSVR), Regularized Extreme Learning Machine (RELM), multi-head attention (MHA), and Bidirectional Gated Recurrent Unit (BiGRU). Firstly, the ICEEMDAN technique is employed to decompose the non-stationary raw wind power data into multiple relatively stable sub-modes, while concurrently utilizing PE to assess the complexity of each sub-mode. Secondly, the dataset is reconstituted into three distinct components as follows: high-frequency, mid-frequency, and low-frequency, to alleviate data complexity. Following this, the LSSVR, RELM, and MHA-BiGRU models are individually applied to predict the high-, mid-, and low-frequency components, respectively. Thirdly, the parameters of the low-frequency prediction model are optimized utilizing the Dung Beetle Optimizer (DBO) algorithm. Ultimately, the predicted results of each component are aggregated to derive the final prediction. The empirical findings illustrate the exceptional predictive performance of the multiscale hybrid model incorporating LSSVR, RELM, and MHA-BiGRU. In comparison with other benchmark models, the proposed model exhibits a reduction in Root Mean Squared Error (RMSE) values of over 10%, conclusively affirming its superior predictive accuracy.
Keywords: BiGRU; ICEEMDAN; LSSVR; multi-head attention mechanism; RELM; wind power prediction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/12/2923/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/12/2923/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:12:p:2923-:d:1414658
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().