EconPapers    
Economics at your fingertips  
 

Heat Pumps with Smart Control in Managing Australian Residential Electrical Load during Transition to Net Zero Emissions

Adrian Rapucha, Ramadas Narayanan () and Meena Jha
Additional contact information
Adrian Rapucha: School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia
Ramadas Narayanan: School of Engineering and Technology, Central Queensland University, University Drive, Bundaberg, QLD 4670, Australia
Meena Jha: School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia

Energies, 2024, vol. 17, issue 12, 1-18

Abstract: Australia, like many other countries around the world, is undergoing a transition toward net zero emissions. It requires changes and development in many sectors, which not only bring benefits but also challenges. The rapid growth in renewable energy sources (RESs) is necessary to decarbonise electricity generation but negatively affects grid stability. Residential buildings also contribute to this issue through specific load profiles and the high penetration of rooftop photovoltaic (PV) installations. Maintaining grid balance will be crucial for further emissions reductions. One of the potential solutions can be the replacement of conventional heating and cooling systems in houses with solutions capable of storing energy and shifting the electrical load. As presented in this paper, heat pumps and hydronic systems can significantly improve the electrical load of a typical South Australian household when they are controlled by algorithms reacting to the current grid conditions and household-generated electricity compared to conventional solutions. TRNSYS 18 simulations of air source and ground source heat pump systems with smart control based on measured electricity consumption and domestic hot water usage data showed the possibility of total energy consumption reduction, shifting the load from peak periods towards periods of excessive RES generation and increasing self-consumption of rooftop PV electricity. These improvements reduce the amount of emissions generated by such a household and allow for further development of other sectors.

Keywords: net zero emissions; renewable energy; heat pump; hydronic system; smart grid; peak demand; grid stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/12/2977/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/12/2977/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:12:p:2977-:d:1416302

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2977-:d:1416302