A High-Speed Multichannel Electrochemical Impedance Spectroscopy System Using Broadband Multi-Sine Binary Perturbation for Retired Li-Ion Batteries of Electric Vehicles
Muhammad Sheraz and
Woojin Choi ()
Additional contact information
Muhammad Sheraz: School of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea
Woojin Choi: School of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea
Energies, 2024, vol. 17, issue 12, 1-16
Abstract:
Retired electric vehicle (EV) batteries are reused in second-life energy storage applications. However, the overall performance of repurposed energy storage systems (ESSs) is limited by the variability in the individual batteries used. Therefore, battery grading is required for the optimal performance of ESSs. Electrochemical impedance spectroscopy (EIS)-based evaluation of battery aging is a promising way to grade lithium-ion batteries. However, it is not practical to measure the impedance of mass-retired batteries due to their high complexity and slowness. In this paper, a broadband multi-sine binary signal (MSBS) perturbation integrated with a multichannel EIS system is presented to measure the impedance spectra for the high-speed aging evaluation of lithium-ion batteries or modules. The measurement speed is multiple times higher than that of the conventional EIS. The broadband MSBS is validated with a reference sinusoidal sweep perturbation, and the corresponding root-mean-square error (RMSE) analysis is performed. Moreover, the accuracy of the presented multichannel EIS system is validated by impedance spectra measurements of Samsung INR18650-29E batteries and compared with those measured using a commercial EIS instrument. A chi-squared error under 0.641% is obtained for all channels. The non-linearity of batteries has a significant impact on the quality of impedance spectra. Therefore, Kronig–Kramer (KK) transform validation is also performed.
Keywords: electrochemical impedance spectroscopy (EIS); battery aging; retired EV battery; battery grading; broadband perturbation; combined multi-sine binary signal (MSBS); digital lock-in amplifier (DLIA); Kronig–Kramer (KK) transform (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/12/2979/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/12/2979/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:12:p:2979-:d:1416372
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().