EconPapers    
Economics at your fingertips  
 

On the Necessity of Including the Dissociation Kinetics When Modelling Gas Hydrate Pipeline Plug Dissociation

Johnbosco Aguguo and Matthew Clarke ()
Additional contact information
Johnbosco Aguguo: Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
Matthew Clarke: Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada

Energies, 2024, vol. 17, issue 12, 1-16

Abstract: Gas hydrate plugs in petroleum fluid pipelines are a major flow assurance problem and thus, it is important for industry to have reliable mathematical models for estimating the time required to dissociate a hydrate pipeline plug. The existing mathematical models for modelling hydrate plug dissociation treat the problem as a pure heat transfer problem. However, an early study by Jamaluddin et al. speculated that the kinetics of gas hydrate dissociation could become the rate-limiting factor under certain operating conditions. In this short communication, a rigorous 2D model couples the equations of heat transfer and fluid flow with Clarke and Bishnoi’s model for the kinetics of hydrate dissociation. A distinguishing feature of the current work is the ability to predict the shape of the dissociating hydrate–gas interface. The model is used to correlate experimental data for both sI and sII hydrate plug dissociation, via single-sided depressurization and double-sided depressurization. As a preliminary examination on the necessity of including dissociation kinetics, this work is limited to conditions for which hydrate dissociation rate constants are available; kinetic rate constants for hydrate dissociation are available at temperatures above 273.15 K. Over the range of conditions that were investigated, it was found that including the intrinsic kinetics of hydrate dissociation led to only a very small improvement in the accuracy of the predictions of the cumulative gas volumes collected during dissociation. By contrast, a sensitivity study showed that the predictions of hydrate plug dissociation are very sensitive to the value of the porosity. Thus, it is concluded that unless values of the thermophysical properties of a hydrate plug are known, accounting for the dissociation kinetics need not be a priority.

Keywords: gas hydrates; flow assurance; kinetics; computational fluid dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/12/3036/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/12/3036/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:12:p:3036-:d:1418541

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3036-:d:1418541